M1.(a) Enthalpy change when 1 mol of an (ionic) compound/lattice (under standard conditions)

Allow heat energy change

Is dissociated/broken/separated into its (component) ions

The ions being in the gaseous state (at infinite separation)
Mark independently. Ignore any conditions.
(b) There is an attractive force between the nucleus of an O atom and an external electron.

Allow any statement that implies attraction between the nucleus and an electron
(c) $\mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{O}(\mathrm{g})+2 \mathrm{e}^{-}$
lgnore lack of state symbols
Penalise incorrect state symbols
$\mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{O}^{-}(\mathrm{g})+\mathrm{e}^{-}$
$\mathrm{Mg}^{2+}(\mathrm{g})+\mathrm{O}^{2-}(\mathrm{g})$

First new level for Mg^{2+} and O above last on L
If levels are not correct allow if steps are in correct order with arrows in the correct direction and correct ΔH values
Next level for Mg^{2+} and O^{-}below that
Next level for Mg^{2+} and O^{2-} above that and also above that for Mg^{2+} and O
Allow +124
Allow M4 with incorrect number of electrons
(d) LE MgO $=602+150+736+1450+248-142+844$
Note use of 124 instead of 248 CE=0
$=+3888 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Allow 1 for-3888
Allow no units
Penalise wrong units
(e) Forms a protective layer/barrier of $\mathrm{MgO} / \mathrm{MgO}$ prevents oxygen attacking Mg Allow activation energy is (very) high
Allow reaction (very) slow
(f) $\quad \Delta G=\Delta H-T \Delta S$
$\Delta S=\underline{(\Delta H-\Delta G)} \quad T$
$\Delta S=(-602-(-570)) \times 1000 / 298$

$$
\begin{aligned}
& =-107 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} /-0.107 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \\
& \quad \text { If units not correct or missing, lose mark } \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

(g) 1 mol of solid and 0.5 mol of gas reactants form 1 mol solid products
Decrease in number of moles (of gas/species)
Allow gas converted into solid

System becomes more ordered
Allow consequential provided ΔS is -ve in 1(f)
If ΔS is +ve in $1(f)$ can only score M1

1
[16]

M2. (a) $\mathrm{KNO}_{3}(\mathrm{~s}) \rightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$
do not allow equations with $\mathrm{H}_{2} \mathrm{O}$
allow aq and the word 'water' in equation
(b) increase in disorder because solid \rightarrow solution / increase in number of particles $/ 1 \mathrm{~mol}$ (solid) gives 2 mol (ions/particles)/ particles are more mobile
allow random or chaos instead of disorder penalise if molecules/atoms stated instead of ions allow any reference to increase in number of particles even if number of particles wrong
(c) $\Delta G=\Delta H-T \Delta S / T=\Delta H / \Delta S$
$\mathrm{T}=\Delta H / \Delta S=(34.9 \times 1000) / 117$
also scores M1
$=298 \mathrm{~K}$
correct answer scores 3, units essential 0.298 scores M1 only
(d) (i) positive / increases / $\Delta G>0$

Allow more positive
(ii) if ans to (d) (i) positive, dissolving is no longer spontaneous / no longer feasible / potassium nitrate does not dissolve / less soluble
if ans to (d) (i) negative, dissolving is spontaneous / feasible / potassium nitrate dissolves / more soluble

If no mention of change to ΔG in (d)(i),
Mark $=0$ for (d) (ii)

M3. (a) (i) $\Delta H=\Sigma$ bonds broken $-\Sigma$ bonds formed
$=944 / 2+3 / 2 \times 436-3 \times 388$
$=-38\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
ignore units even if incorrect
correct answer scores 3
-76 scores $2 / 3$
+38 scores 1/3
(ii) mean / average bond enthalpies are from a range of compounds or mean / average bond enthalpies differ from those in a single compound / ammonia
(b) $\Delta S=\Sigma S$ products $-\Sigma S$ reactants
$=193-(192 / 2+131 \times 3 / 2)$
$=-99.5 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
units essential for M3 correct answer with units scores 3 $-199 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \&-99.5$ score $2 / 3$

Page 5
(c) (i) $\Delta G=\Delta H-T \Delta S=-46+800 \times 99.5 / 1000$ mark is for putting in numbers with 1000 if factor of 1000 used incorrectly $C E=0$
$=33.6$ or 33600
allow 33 to 34 (or 33000 to 34000)
$\mathrm{kJ} \mathrm{mol}^{-1}$ with $\mathrm{J} \mathrm{mol}^{-1}$
correct units for answer essential if answer to part (b) is wrong or if -112 used, mark consequentially e.g.

- -199 gives 113 to $114 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (scores 3/3)
- -112 gives 43 to $44 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (scores $3 / 3$)
(ii) If answer to (c) (i) is positive: not feasible / not spontaneous

If answer to (c) (i) is negative: feasible / spontaneous
if no answer to (c) (i) award zero marks
1
[11]

M4. (a) Particles are in maximum state of order
(or perfect order or completely ordered or perfect crystal or minimum disorder or no disorder)
(entropy is zero at $0 k$ by definition)
(b) (Ice) melts
(or freezes or changes from solid to liquid or from liquid to solid)
(c) Increase in disorder

Bigger (at T_{2})
1
Second mark only given if first mark has been awarded
(d) (i) Moles of water $=1.53 / 18(=0.085)$

Heat change per mole $=3.49 / 0.085=41.1\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(allow 41 to 41.1, two sig. figs.)
(penalise -41 (negative value), also penalise wrong units but allow kJ only)
(ii) $\Delta G=\Delta H-T \Delta S$
(iii) $\Delta H=T \Delta S$ or $\Delta S=\Delta H / T$
(penalise if contradiction)
$\Delta S=41.1 / 373=0.110 \mathrm{~kJ} \mathrm{~K}^{-1}\left(\mathrm{~mol}^{-1}\right)\left(\right.$ or $110\left(\mathrm{~J} \mathrm{~K}^{-1}\left(\mathrm{~mol}^{-1}\right)\right)$
(allow 2 sig. figs.)
(if use value given of 45 , answer is 0.12 (or 120 to 121)
(if ΔH is negative in (d) (i), allow negative answer)
(if ΔH is negative in (d) (i), allow positive answer)
(if ΔH is positive in (d) (i), penalise negative answer)

Correct units as above (mol${ }^{-1}$ not essential)
[10]

M5. (a) Because it is a gas compared with solid carbon Mark independently

Nitrogen is more disordered/random/chaotic/free to move
(b) $0 \mathrm{~K} /-273 \mathrm{C} /$ absolute zero
(c) $\Delta G=\Delta H-T \Delta S$

Allow $\Delta H=\Delta G-T \Delta S$
$T \Delta S=\Delta H-\Delta G$
$\Delta S=(\Delta H-\Delta G) / T$
Ignore θ in ΔG°
1
(d) ΔG is less than or equal to zero $(\Delta G \leq 0)$

Allow ΔG is less than zero $(\Delta G<0)$
Allow ΔG is equal to zero $(\Delta G=0)$
Allow ΔG is negative
(e) When $\Delta G=0 T=\underline{\Delta H / \Delta S}$

$$
\Delta H=+90.4
$$

Allow $\Delta H=+90$
$\Delta S=\Sigma S($ products $)-\Sigma S($ reactants $)$
$\Delta S=211.1-205.3 / 2-192.2 / 2=\underline{12.35}$
$T=(90.4 \times 1000) / 12.35=7320 \mathrm{~K} / 7319.8 \underline{\mathrm{~K}}$
Allow 7230 to 7350 K (Note 7.32 K scores 4 marks)
Units of temperature essential to score the mark
(f) Activation energy is high

Allow chemical explanation of activation energy
Allow needs route with lower activation energy
Allow catalyst lowers activation energy
(g) $\Delta H=1.9\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
$\Delta S=2.4-5.7=-3.3\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ for M1 and M2 allow no units, penalise wrong units
ΔG is always positive
This mark can only be scored if ΔH is +ve and ΔS is -ve

